歡迎加入

登入中時部落格

帳號:  
密碼:  
驗證:   (請輸入下方文字)
驗證用圖片
 
 
若是還有其它問題,
請e-mail至:888@infotimes.com.tw

王孟源的部落格

事實與邏輯

  • 本格總瀏覽人次-2,834,845
  • 引用-0
  • 迴響-4,710
  • 文章-190
  • 2015-03-01 02:59

【工業】【能源】永遠的未來技術

我高一那年,有一位清華的教授到台中來演講,講題是核融合(Nuclear Fusion,大陸叫核聚變)。當時Princeton university正在籌建西方的第一座大型Tokamak核融合反應器TFTR(Tokamak Fusion Test Reactor)。Tokamak原本是蘇聯的設計,亦即在一個環面形的容器内,靠高强度磁場來制約極高温的電漿(Plasma,大陸稱為等離子體);電漿内的氫同位素原子核在温度够高時,便能跨越電磁排斥力而融合成氦,並釋放出大量的能量。那位教授不但把物理和工程的綜合過程描述得極為生動引人,而且一再强調在30年内核融合電厰就必然會商業化,從而一舉解決人類的能源需求問題。十五歲的小伙子很容易上當,尤其是當演講人自己也相信那些鬼話的時候,所以我基於錯誤的訊息做了两個重大的人生決定:第一個是捨數學而做物理;第二個是捨台大而上清華。

當然,30年早已過去了,TFTR從1982年起到1997年運行了15年,根本就没有解決核融合電厰的真正技術難題,這個燙手山芋被丟給了下一代的International Tokamak Experimental Reactor(ITER,將於今年開始組裝,預計2027年開始運作)。與30多年前相比,現在最樂觀的核融合研究估計(只算誠實的)是還要至少50年才有可能實用化,也就是進度倒退了20年。以這個趨勢來算,到50年後的2065年,進度會再倒退30年,所以屆時搞核融合的主管應該會給出“再過80年”的估計了。這雖然是個笑話,卻是很有可能會真正發生的,因為前面提到的“核融合電厰的真正技術難題”是怎様處理核融合產生的中子:人類至今所有的機械靠的都是電磁作用,而中子卻是真正全電中性的,不像原子一様有帶負電的電子包圍帶正電的核子,所以我們對中子的路徑完全無法控制,唯一的選擇是要不要遮擋它。目前所有的Tokamak設計靠的都是D+T=>He+n的反應,其中D是Deuterium(氘,多含一個中子的重氫),T是Tritium(氚,多含两個中子的超重氫),He是Helium(氦),而n是Neutron(中子);因為這是唯一一個其所需温度没有超過人造磁場控制能力的反應。但是中子比氦輕四倍,所以它帶出的動能也就多四倍,亦即核融合反應產生的80%能量是由中子帶走。既然我們要發電,就必須在Tokamak外面吸收這些中子,那麼Tokamak的内壁就必須對中子“透明”,所以負責維持真空的内壁再加上吸熱的水管(產生磁場的線圈可以做在水管之外,但是仍將承受部分中子輻射)將在完全没有屏障的情形下,長期承受比核裂變反應器高出好幾個數量級的中子轟擊,其結果是這些物質必然會弱化而需要定期替換,但是在這個過程中它們也會得到放射性。也就是核裂變電厰只須要換燃料棒,而核融合電厰卻須要定期把整個帶有放射性的反應器拆掉重裝;即使在技術上有可能做到,它的價格和風険都將遠超人類所能承受的極限。所謂的ITER和現有的下一代設計都對這個問題束手無策,搞核融合的人的態度基本上是船到橋頭自然直;可是這艘船在30年前就已經撞橋沉没,30年來拼命加大引擎,那麼不但再度撞橋是必然的,其後果也只能更為慘烈。

法國和日本競標ITER之後,法國出價最高而獲勝,日本則得到一系列的安慰獎。地點選在法國東南部的鄉下,但是距離渡假盛地French Riviera只有一步之遙

既然核融合是未來的技術,而且永遠都會是未來技術,那麼要解決能源問題,就必須開發更先進的核裂變技術。我從十幾年前就對高温氣冷堆情有獨鍾,所以後來很高興看到中共在這個項目上持續投資,到2012年已經正式在山東石島灣核電站開建世界第一座商業化的高温氣冷反應堆。不過今天我將專注在永遠的未來技術上,所以以後有空再詳談這事。現在我只想指出,幾年前南非還没有放棄高温氣冷堆,西方的核電專家在列舉它的優點時,經常會提到它的工作温度在氏1000度左右,剛好是對水進行電離分解效率最高的温度,所以在高温氣冷堆發電站有熱有電,最適合建設氫氣厰,而用氫氣來替代汽油、柴油、天然氣和煤等等化石燃料的“氫氣經濟”(“Hydrogen Economy”)則是某些人心中解決能源供應、大氣污染和全球暖化的一舉多得方案。氫氣燃烧之後只產生水,因此是完全零污染的。此外氫氣不像化石燃料一様需要效率一般在40%左右的熱機(Heat Engine),而可以通過燃料電池以極高的效率轉化為電能。全球第一個根據這個構想而開始生產的商業化產品是Toyota的Mirai氫氣動力車,2014年十一月在洛杉磯車展正式公開,同年十二月15日在日本開始銷售,預計2015年只出產700輛,但是Toyota認為它會是下一代的技術主力,前途不可限量,所以還特别請了日本總理安倍晉三做代言人,對其重視的程度不言可喻。

Toyota的這個商業戰略賭注,有很明顯的脉絡可循:Toyota在1995年的東京車展公開了世界第一輛商業化的混合動力車輛Prius,1997年開始正式銷售,此後18年Prius不但占有全球混合動力車輛銷售量的一半以上,對Toyota的品牌價值也有極大的貢獻,幫助它一舉超越VW和GM成為世界第一大汽車生產商。不過到現在每個稍有規模的全球性汽車公司都已經有了自己的混合動力技術,而Toyota卻很明顯的在近年减低了對這方面的投資,以致當所有的競争對手都已採用更先進的鋰電池,2015年的Prius基本型仍然在用鎳氫電池。從Toyota的角度來看,混合動力車輛的技術已經成熟普及,市場也趨於飽和,與其殺價血戰,不如早對手一步,另辟新戰場。這個思路和Nintendo一様:在Wii那一代,Nintendo避開繪圖馬力的競賽,靠著獨創的遙控器走偏鋒而戰勝了更强大的對手們;幾年之後,下一代的Wii U仍然是靠與眾不同的人機界面來吸引顧客。不過就如Nintendo的Wii U遠不如Wii那麼成功,Toyota的Mirai只怕也走上了歪路。

為什麼我不看好氫氣動力車呢?這主要是因為氫氣經濟不是一件新鮮事,一百年前就有一種交通工具大量使用氫氣,只不過不是用來作燃料;我說的就是飛艇(Zeppelin)。後來這個氫氣經濟戛然而止,原因當然是1937年的興登堡號大爆炸。做過化學實験的人或許記得,氫氣是一種極易燃、極易爆的氣體,汽油和天然氣和它比起來,幾乎像開水一様的穩定安全。飛艇用的氫氣完全是由專業人員操作的,飛艇也没有出車禍的危険,結果還是不能解決安全問題。而鼓吹新氫氣經濟的人所想像的是把載著氫氣筒的汽車交到16歲的毛頭小伙子和90歲的老太太手裡,讓他們滿街跑;與此同時,氫氣管道必須從生產厰房一路埋到大街小巷的各個加油站。其結果必然是車禍衝撃到燃料箱就有劇烈爆炸,道路施工錯挖管線就會連環氣爆;哪個現代社會會願意花大銭來換裝一個使人口死亡率成倍增加的危険技術呢?燃料電池是個很有前途的新科技,但是它必須使用碳基燃料,例如甲醇(Methanol)或乙醇(Ethanol);這有幾個原因:1)它們遠比氫氣安全;2)它們可以從生物廢料(Bio-waste)直接生產,而氫氣必須靠電能來產生,全循環的效率低;3)它們的輸送和儲存都遠比氫氣便宜。所以雖然使用甲醇和乙醇的燃料電池技術還不成熟,最終必然還是它們才有可能(但不一定會)勝出。氫氣經濟又貴又危険,就如核融合發電一様,也只是永遠的未來技術。

  • 人氣:16,876
  • 引用:2
  • 迴響:16
  • 作者:王孟源

引用

迴響(16)

# re: 【工業】【能源】永遠的未來技術
有關於氫的儲存與運輸,作者只著眼於 physical storage, 但是忽略了 chemical storage, 以及 nanoscale 的, 介於 physical 與 chemical 之間的 molecular storage.
那些技術極不成熟、增加費用和重量,而且對輸送完全無解。

我的論點不是技術上不可能,而是經濟上不可能。經濟上的考量又包括效費比和風険。核融合和氫氣動力都在這两方面輸得一塌糊塗。
# re: 【工業】【能源】永遠的未來技術
我认为如果能进一步解决快速充电和储能进一步小型化,电动汽车是最适合大众使用。
不过开长途车还是一个问题。

我自己开混合動力車将近十年,非常喜欢它的节能成果。我觉得在可见的未来,混合動力車还会是减碳技术的主流。
# re: 【工業】【能源】永遠的未來技術
短期内,电动车还只能在城里开开。我相信大约8至10年,电动车就可以连续开超过5个小时,而且可以很方便地充电,像手机一样。那时你可以用它开长途了。
希望如此吧。电池充电速度慢是电极的问题,现有的新设计都还很不成熟,还有很大的研发空间。
# re: 【工業】【能源】永遠的未來技術
短期內 個人以為提高醇類與汽油的比例的汽車 才是最可行的商業方案 氫氣只適合做為發電 (意即版主所言 專業的使用)非基礎用電
可是連潜艇的AIP(絶氣推進系統),德國Siemens的燃料電池都不敢用氫。。。

在民用上,氫必須靠電能產生,全生命循環的效率很低,所以零售上真没有經濟價值。電本身就是很容易傳送的能量,只有儲存是个麻煩。用氫來儲能,以備尖峰用電時發電,或許是可行的。但是行内人忙著忽悠大眾,搞氫氣車,在那方面反而没什麼動静。
# re: 【工業】【能源】永遠的未來技術
版主您好!經常閱讀版主BLOG,收穫良多,先在此致謝!

想給版主看一則消息,關於青島首列氫能源動車,不知這種能源動車,是否會如版主所說有行駛上的安全疑慮?抑或技術上能有所突破而控制得宜?

# re: 【工業】【能源】永遠的未來技術
www.guancha.cn/Industry/2015_03_22_313101.shtml

忘記附上連結!
這篇文章我看了,覺得這個技術構想沒有氫動力汽車那麼糟糕(主要是氫的儲藏和傳輸限制在專業人員的手中),但是在經濟上仍然是沒有前途的。氫必須用電離來生產,然後在應用時再由燃料電池轉換為電能;這兩個步驟的效率都比內燃機高得多,但是仍然不是100%,所以氫動力列車和電動列車相比,先天上就是畫蛇添足,而這還沒有考慮到氫在儲藏和傳輸上的費用和風險。
# re: 【工業】【能源】永遠的未來技術
东方超环(EAST)超导托卡马克2012年物理实验顺利结束。在长达四个多月的实验期间,科学家们利用低杂波和离子回旋射频波,实现多种模式的高约束等离子体、长脉冲高约束放电,自主创新能力得到较大提高、获得多项重大成果,创造了两项托卡马克运行的世界记录:获得超过400秒的两千万度高参数偏滤器等离子体;获得稳定重复超过30秒的高约束等离子体放电。这分别是国际上最长时间的高温偏滤器等离子体放电、最长时间的高约束等离子体放电,标志着我国在稳态高约束等离子体研究方面走在国际前列。

高参数、高约束模式偏滤器等离子体是未来聚变托克马克放电的最基本的运行方式。我国参加的最大国际科学合作项目——国际热核聚变实验堆(ITER)首要目标是实现400秒的高约束等离子体,但实现该科学目标尚面临众多科学和技术(物理和工程)上的挑战。目前,国际上大部分托卡马克的偏滤器等离子体持续时间均在20秒以下,欧盟和日本科学家曾获得最长为60秒的高参数偏滤器等离子体。本次实验,我国科学家针对未来ITER 400秒高参数运行的一些关键科学技术问题,如等离子体精确控制、全超导磁体安全运行、有效加热与驱动、等离子体与壁材料相互作用等,开展了全面的实验研究,通过集成创新,实现了411秒、中心等离子体密度约2´1019m-3、中心电子温度大于两千万度的高温等离子体。

高约束等离子体放电是未来磁约束聚变堆首选的一种先进高效运行方式。从上世纪八十年代以来,世界上众多托卡马克都在探寻各种方式实现高约束放电、并不断尝试延长高约束放电时间。实现长时间高约束放电长期以来一直是国际聚变界追求的目标和挑战极大的前沿课题。目前正在运行的托克马克的高约束放电时间大都在10秒以下,最长的是日本JT-60U装置(已退役)曾在2003年利用强流中性束加热实现一次28秒的高约束等离子体放电。在本轮EAST实验中,我国科学家另辟新法,利用低杂波与射频波协同效应,在低再循环条件下实现了稳定重复的超过32秒的高约束等离子体放电。我国科学家所用的方法独特、经济、有效,为未来国际热核聚变实验堆(ITER)提供了一条高效实现高约束放电的新途径。

东方超环(EAST)是由国家发改委立项的“九五”国家大科学工程,是由我国科学家独立设计建造的世界首个全超导托克马克,于2007年建成并开始科学实验。在国家科技部(ITER专项)、国家基金委、中科院等部门的支持下,东方超环的科学工作者在吸收国外先进科学知识和技术的基础上,不断创新,重大科学实验设备国产化率大于90%,科学实验不断深入,已吸引大批国外科学家来华开展科学实验,并且美国能源部已将EAST列为未来美国磁约束聚变合作的首选装置。自今年2月开始本轮EAST科学实验以来,超过100位的国外科学家来华开展广泛的合作研究。实验中,国内外科学家们围绕高参数长脉冲等离子体相关科学技术问题开展了大量的科学实验,取得了一系列新结果和大量的科学实验数据,为未来更高参数的长脉冲物理实验奠定了很好的科学技术基础。







400秒等离子体运行





稳定重复的长脉冲H-mode运行

www.ipp.cas.cn/.../t20120710_96336.html

这是大陆在2012年做出的一个重要结果,而且EAST所取得的数据是在没有“中性束加热”和“电子回旋加热”的基础上做出的,意思就是这个超出目前国际最好水平20倍的数据,完全是通过微波可控加热完成的!就是说在EAST的辅助加热装置完成后,这个数据还可能大幅度提高。

版主是高能物理的专家,想听一听版主的分析。
钱投下去自然有进步,但是这些技术性的指标突破和最终要发电没有关系,因为他们对真正的难关还是无解。这些新闻稿只是用来骗经费的。

我的Motto是“Truth And Logic”,“事实与逻辑”,所以有时会写些文章来批判媒体所刊登的虚伪宣传。现代社会里的虚伪宣传当然是为各式各样的自私特权服务,而他们不怕被揭露辟谣的原因又依其靠山分为几类:有政治靠山的,有经济靠山的,和有专业知识门栏的。这些搞核聚变的属于最后一类。
# re: 【工業】【能源】永遠的未來技術
那版主认为最难突破的难点有哪些?是否在可见的将来是无法克服的?
# re: 【工業】【能源】永遠的未來技術
請看版主 "永遠的未來技術" ㄧ文。
# re: 【工業】【能源】永遠的未來技術
我知道版主主要认为中子是一个无法克服的障碍,会导致能量的急剧损失,或导致内壁材料的快速失效及核污染。但是,我也知道大陆不像美国和欧洲一样,在看似无望的基础学科上花大力气。进一步说,中美都是研究过氢弹和中子弹的,对中子的特性是有相当深入的研究,而且这些知识都是这些国家的最高机密之一。同时从公开的资料显示,大陆很多研究氢弹的专家都转入研究可控核聚变项目,所以我希望版主能从上面的信息当中找到一些积极地信息。
EAST是比ITER小半代的先期实验,他们这次吹嘘的“成就”还是在用磁场约束等离子体的技术细节上。

这些实验并不是完全没有价值的:高温等离子体本身就是一个物理研究的尖端项目,但是这是纯粹的基础科研,也就是为了新知识而研究新知识。它的实际应用或许包括氢弹的改进(我对那方面完全无知),但是绝对不包括发电。所以我的批评只针对核聚变电厂这类的不诚实吹嘘;如果投资方是为了基础科研或者改进氢弹而继续推进这方面的研究,我完全没有负面意见。
# re: 【工業】【能源】永遠的未來技術
今天剛看到個新聞:

75天到火星!美国电磁飞船或打破牛顿第三定律

mil.cankaoxiaoxi.com/bd/20150506/769260.shtml

請問這個技術有可能嗎?
这是不可能的;全文都是假造的。我真是不懂,为什么网络上会有人以纯骗人为乐;浪费自己和大家的时间,摧残社会的集体智慧,只为了看笑话?
# re: 【工業】【能源】永遠的未來技術
謝謝指教,這我就放心了,原來還有點怕自己落了呢。
下次若看到打破熱力學定律、牛頓定律和相對論的,它就是騙人的。
# re: 【工業】【能源】永遠的未來技術
1)ITER 是International Thermonuclear Experimental Reactor 的縮寫。

2) 參考這篇http://goo.gl/OLMsZS (聚變能源或成一場空夢:終極能源實驗遭遇坎坷)。
在20世纪70年代,托卡马克的前途似乎一片光明,有些研究者甚至预言,到20世纪90年代就能建造出聚变核电站来。当时唯一的挑战就是,如何把研究型反应堆放大到实用尺寸,一般而言,托卡马克结构越大,其中的等离子体能达到的温度就越高,核聚变的效率也就越高。

  然而问题渐起。等离子体内部能传导电流,受自激电流的影响,等离子体会变得弯拱扭曲,形成剧烈的乱流,这些乱流像鞭子一样抽打等离子体,将其甩出磁笼,冲击装置的外壁。于是,随着等离子体温度升高,必须要有更大的托卡马克来提供额外的空间,同时还要有更强的磁场来约束等离子体。这两者都需要增大线圈中的电流,而更大的电流意味着更高的能耗,结果很清楚:托卡马克越大越强,它就需要更多的能量来维持。

  这种正反馈意味着,普通的托卡马克装置永远也无法输出净能量。对此,包括李秀景在内的研究者只知道一种招架方法:超导,即利用有些导体在很低温度下电阻消失因而没有电能损耗的特性。如果托卡马克的电磁铁使用超导材料,只需注入一次电流,它就会一劳永逸地运转下去。这样能耗虽然降低了,但花费却非常巨大,超导体是一种特殊、昂贵的材料,而且为了维持超导状态,必须用液氦一直冷却它们,使之处于非常接近绝对零度的状态。


3)核終的討論串提到
核融合真正的問題,也不是在中子的控制問題,把核融合包封性的問題導向中子無法控制是一種誤導或是不具論證性的推斷,目前電磁核融合是使用離子替代中子,真正的問題在於無法有淨能量的輸出,一般咸信是包封時間不夠久,而破壞電磁包封的主因,來自於不純物混入電漿,與中子不受控,沒有關係。
https://goo.gl/qEltyC
你不是學物理的,請不要拿一知半解的認知來哄人。我的時間有限,不能一個一個人地教。文章已經寫了,補充材料得你自己去找。如果你的基礎教育不夠,不能理解,那就不該在這裡下斷言。美國人寫文的步調和中國式的不一樣,翻成中文很容易被誤解。你只憑著一篇翻譯過來的科普文,就要來否定有專業教育的人的意見,未免太自不量力。

磁場控制等離子體的困難,是可以靠技術和材料的進步來解決的。如果ITER還沒有完全解決,下一代也必然會做到。

中子的處理問題是物理困難,這才是工程手段無法解決的。

最後說一句,為了自己面子而在留言欄死鴨子嘴硬純抬槓的,我會直接刪除。我的部落格是為了人口中前0.1%的精英而寫的;如果沒那個水準,要旁聽我不介意,要發言就必須以不打擾正題為前提。
# re: 【工業】【能源】永遠的未來技術
我原来的理解是托卡马克的本身的困难只是等离子体约束上的大量艰巨工程难题。没有想到过中子屏蔽的问题。

但是还是有些不解之处,为何中子屏蔽不能放在超导磁铁及真空腔体内部呢?

我google了一下ITER的设计,似乎目前托克马克的概念都是把中子俘获吸收材料及gamma屏蔽材料放在腔体里面,,是第一层最直接接触到等离子体的设备。中子屏蔽体会有1m厚度以上,俘获中子后会产生大量热量被屏蔽材料中的冷却水管回路吸收热量,将热量带出托克马克来发电。

长期运行时中子屏蔽材料肯定不可避免会被中子辐照损伤并活化带有放射性,从一些托克马克的新闻照片来看,那些屏蔽材料都是砖块一样,应该可以较为方便的拆下替换。

本身中子材料应该不贵,所以看起来中子并不是目前最大的问题。

您提到如果为了发电,中子吸收这一步必须放在托克马克外面,这是为何呢?
中子的穿透力很強,這是因爲它是電中性的,所以所謂的中子屏蔽,衹能靠原子核藉強作用力來與之反應。但是強作用力的距離很短,反應截面很小;反應截面最大的是氫原子核,所以水是很好的中子減速劑。

理論上可以把水管裝在磁綫圈内部,但是這就有了新的問題:1)磁場必須做得更大更強,但是人造磁場是有極限的;2)内壁或許可以用磚塊,但是水管卻是承力結構(裏面是極高壓超臨界水)。

仔細想想,中子携帶了核聚變反應後的大部分動能,電廠必須把它吸收到水裏,所以你看到的那些磚塊并不是用來屏蔽中子的,而是用來屏蔽等離子的。這是因爲等離子體遵守波茨曼分佈,不論磁場多强,總有一些離子的動能特別高,能夠突破電磁障壁。

因此,真正的中子屏蔽其實正是那些水管,問題的核心也就在這些水管,它們不但是承力結構,還承受了全劑量的中子轟擊,因此必須經常更換。人類還沒有發明能在高放射性環境下,經常更換承力結構的技術。

這些水管是遠遠不足以屏蔽全部中子輻射的,所以連磁綫圈也會需要定期更換,衹不過是沒有像水管那麽頻繁;不過總體來看,仍然是每隔幾個月就必須把已受高輻射污染的整個反應器拆開重建。人類若是有這個技術,還是先把車諾比和福島的反應爐清理一下吧。

正文裏的那句話的確寫得太簡略了,我已更正。
# re: 【工業】【能源】永遠的未來技術
网络上每次提到为什么人类要登月时都会提到月球上的氦3,这东西核聚变不是不产生中子么?还是需要的温度太高不具可行性?
正是因爲氦3聚變不產生中子,所以科幻小説裏常常拿開采氦3作爲殖民月球的經濟動機。

實際上氦3聚變要求的溫度比氘-氚聚變高十倍左右,遠非目前的技術所能達到的。此外,雖然沒有屏蔽中子的難題,但是怎樣把聚變產生的熱能有效地取出用以發電仍然是個未解的問題。
# re: 【工業】【能源】永遠的未來技術
王博士對這個新聞有什麼看法?
www.chinanews.com/gn/2016/09-17/8006008.shtml
以我有限的科學水平來理解這新技術好像是把氫以溶液的狀態來儲存,到車裏才把氫重新分解出來用,而不是以高壓或低温直接壓縮氫來儲存。這樣的話是不是能解決氫的安全問題?還是說這只是個炒作?
這是一個安全的儲存技術,但是密度很低,重量、容積都太大,還不如用電池。

此外,從生產點運輸到消費點的問題還是沒有解決。

留下迴響

    • 帳號/暱稱:
    • E-mail:
    • 個人網頁:
    • 留言標題:
    • 留言內容:


  • (只有登入情況下才能留悄悄話,版主回覆也只有已登入的您才能看見)
    • 驗證碼:

    • (請輸入右方文字)

個人檔案

廣告

最新文章

最新迴響

訂閱

TOP